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ABSTRACT

A new finite-difference time-domain (FD–TD)
formulation is proposed for the efficient analysis of arbitrary
waveguiding structures. In contrast to the conventional
FD–TD eigenvalue formulation, which requires a
three--dimensional mesh for adequately formed resonator
sections, this method utilizes advantageously a
twtiimensional mesh for analyzing the full–wave
dispersive characteristic of guided structures. This leads to a
significant reduction in cpu time and storage requirements.
Numerical examples are presented for bi– and unilateral
finlines with finite metallization thickness and for a pair of
coupled shielded dielectric guides. The theory is verified by
comparison with results obtained by other methods.

INTRODUCTION

The fmite--dfference tim~omain (FD–TD) method
[1] is a widely established and versatile numerical tool for
solving eigenvalue and scattering roblems of a great variety

rof microwave guiding structures 2] – [6]. The conventional
approach for analyzing the dispersion behavior of such
waveguides utilizes a three-dimensional mesh for
appropriate resonating sections which are obtained by
placing shorting planes in halfwave dktance along the axis
of propagation of the structure under investigation. By
repeating the calculation of the resonant frequency of these
resonators for different distances of the shorting planes, the
dispersion charac~:istic may be determined step by step.
Consequently, conventional approach requires
considerable CPU time, needs a relatively large memory size,
and tends to inaccuracies in the near of the cutoff
frequencies.

This paper introduces an improved FD–TD
full–wave analysis method which is based on a new
two-dimensional FD–TD mesh formulation (Fig. 1 .

)Similar to the improved TLM analysis presented recent y
[7], which applies a phase relationship between TLM node
voltages, the new FD—TD formulation in this paper reduces
the original three-chrnensional Yee’s mesh by utilizing the
fact that electric and magnetic fields of the wave in the
wave propagation direction z of the waveguiding structure
are merely related by the phase factor of the waveguiding
structure to be investigated. This formulation helps to
alleviate the above mentioned shortcomings of the
conventional FD–TD approach for the analysis of
waveguiding structures since the iteration procedure for the
pulse propagation needs only to be carried out in the cross
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Investi ated mm–wave and optical waveguidlng structures.

7a Nonradlative guide b=a/2, cr=3.75,

1

b Unilateral finline, c) Bilateral finline,
d Shielded coupled dielectric waveguides,
dimensions (mm): a=2b=4, s=d=p=l, tr=2.56.
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section x,y dimension. Consequently, a considerable
reduction of both cpu time and memory space required is
achieved. Typical numerical results for finline and optical
waveguide structures are presented (Fig. 2). The theory is
verified by comparison with available results of other
methods.

THEORY

The FD–TD method is usually formulated by
discretizing Maxwell’s curl equations over a finite volume
and approximating the derivatives with centered difference
approximations [I] - ~]. This leads to the
thrtilmensional Yee’s mes [1] in various modifications
[2] - [6].

Following Yee’s notation, we denote (Fig. 1)

(i,j,k) = (iAx, jAy, kAl) , (1)

where in our case k is only k = +1. Utilizing the following

relationships between the transverse fields fit and fit of a

guided wave traveling in +Z direction (Fig. 1) of the
waveguiding structure to be investigated,

flt(z * Al) = fit . e
~ j@Al

~ j/3Al (2)
fit(z+Al)=Fit. e ,

and using Yee’s formulations e.g. in the form of [2] for
anisotropic structures, a new set of FD–TD equations for

the six components ~ and F is derived. Thus we obtain e.g.
for H

x

‘–1/2(i,j+l/2)Hn+l/2(i,j+1/2) = Hx

+~/[pm(i,j+l/2). ZFO] , {E~(i,j+l/2), [e–jOA1 – I] (3)

+ E~(i,j) - E~(i,j+l)} ,

Jwhere the stability factor is s = c At Al, c is the velocity of
light, ZFO is the characteristic impe ante of free space, and

P= is the diagonal element of the relative permeability

tensor. The condition for stability in free space is s ~ l/@
[2].

The remaining finite difference equations related to
the other five field equations can be similarly calculated.
Note that the FD–TD equations in (3) only depend on iAx
and jAy, i.e. the mesh for the pulse propagation iteration
needs only to be built up in the cross section x,y dimension,
the number of nodes in z direction is reduced to +1. Also it
should be emphasized that the amplitudes of all field
components in the new formulation are complex quantities.

The principal numerical calculation steps are similar
to those in the conventional FD–TD approach with the
exception that a propagation factor ~ has to be selected
first. After launching an excitation pulse, waiting until the
distribution of the pulse is stable and performing the
Fourier transformation, the modal frequencies related to the
selected propagation factor are obtained.

RESULTS

Fig. 2 shows some typical mm–wave and optical
waveguiding structure examples which have been
investigated by our improved FD–TD method. Normalized
and actual resonant frequencies of nonradiative guide (Fig.
2a) and unilateral finline (Fig. 2b) resonators of finite length

J
c are reported in 2] which are calculated by the transverse
resonance met ho (TRM), the spectral domain method
(SDM), the transmission line methghT~M~Atm$ t%
conventional three-dimensional
comparison with these results is particularly indicated,
therefore. In order to verify our results with the calculations
of [2], the related fundamental mode dispersion curves
obtained by our two-dmensional FD–TD method are
plotted in Fig. 3. The dimensions of the nonradiative guide
(Fig. 3a) resonator in [2] area= 12Az, b = 6Az, c = 8Az
and the data of the unilateral finline (Fig. 3b) resonator [2]
are given by a = 20mm, b = 10mm, c = 15mm, w = lmm,
d = 4mm, Cr = 2.22. Although the discretization in our 2D
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Fundamental mode dispersion curves obtained by our

twtilmensional FD–TD method.
Comparison with the conventional 3D FD–TD

method [2] for resonators of finite lengths c.
a) Nonradiative guide.

Discretization 2D FD–TD: 12 x 6.
b) Unilateral finline.

Discretization 2D FD–TD: 80 x 20.
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FD–TD method was relatively wide-meshed (12 x 6 for Fig.
3a, 80 x 20 for Fig. 3b), very good agreement maybe stated.
The number of time iterations used was 2000 in both cases.
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Fundamental mode dispersion curves for a bilateral finline

obtained by our t we-dimensional FD–TD method.
Comparison with own calculations using the 2D TLM,

SDM, and MOL methods.
WR–3 housing, c, = 2.2, w = O.lmm, s = 0.124mm,

t = 54 pm. N;mber of time iterations: 2000.
Discretization: 32 x 16.

The great advantage of the 2D FD–TD method
reported in this paper as compared with the classical 3D
FD–TD method is that the whole set of dispersion curves of
waveguide structures can be obtained in one computational
run and with the same degre of accuracy. Fig. 4 presents
the dispersion curve for the fundamental mode in a bilateral
finline. The analysis has been verified by own calculations
applying the method of lines (MO L), the spectral domain
method (SDM), and a modified 2D TLM algorithm which is
based on similar formulations like those used for the 2D
FD–TD method. Good agreement with the results of the
MOL and TLM methods may be observed. Compared with
the SDM (for t = O), howeve~, there are some discrepancies
which are due to the finite thickness of the metallization (t
= 54#m) which has been taken into account in our 2D
FD–TD, MOL, and TLM calculations.

A unilateral Mine is investigated in Fig. 5. Here,
good agreement with the SDM may be stated since the
influence of the finite thickness of t = l’7flm on the
fundamental mode propagation behavior for this kind of
structure has been taken into account in the SDM
calculation used which is based on a new spectral domain
formulation taking the finite metallization thickness into
account. Fig. 5 presents the dispersion curves for the even

and odd E~le and E~lo modes of a shielded coupled

dielectric waveguide. The agreement with results calculated
by our own 2D TLM method as well with mode-matching
results reported in [7] is very good although the
discretization is only 24 x 16.
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Fundamental mode dispersion curve for a unilateral

finline obtained by our two-dimensional FD–TD
method. Comparison with own calculations using the 2D

TLM, and SDM methods.
WR–3 housing, Cr = 2.2, w = O.lmm, s = 0.127mm,

t = 17 #m. Number of time iterations: 2000.
Discretization: 152 x 38.
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Dispersion curves for the even and odd E~l modes

of a shielded coupled dielectric waveguide
obtained by our twc-dimensional FD–TD method.

Comparison with own calculations using the 2D
TLM method, and by mode-matching (MM) results

reported in [7].
Dimensions: a = b = 2mm, s = d = u = lmm,

= 1.0, cr2 ‘= 2.56, “
‘:rl

Number of time iterations: 2000.
Discretization: 24 x 16.
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CONCLUSION

A new finite-difference time-domain formulation is
presented for the full–wave analysis of arbitrary
waveguiding structures. This method utilizes
advantageously a twtilmensional mesh instead of the
original three-dimensional Yee’s mesh. Consequently a
significant reduction in cpu time and storage requirements is
achieved. Moreover, the whole dispersion curve can be
obtained with the same degree of mesh dlscretization, and
hence with the same accuracy. Typical numericzd examples
demonstrate the applicability of the 2D FD–TD method.
The theory is verified by comparison with results obtained
by other methods.
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